Fractional Mathematical Operators and Their Computational Approximation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discrete Approximation of Unbounded Operators and Approximation of their Spectra

Let E be a Banach space over C and let the densely defined closed linear operator A: D(A) ... EQ E be discretely approximated by the sequence ((An, D(An)))n ¥N of operators An where each An is densely defined in the Banach space Fn. Let sa(A) be the approximate point spectrum of A and let se(An) denote the e-pseudospectrum of An. Generalizing our own result, we show that sa(A) ... lim inf se(An...

متن کامل

Fractional approximation by Cardaliaguet- Euvrard and Squashing neural network operators

This article deals with the determination of the fractional rate of convergence to the unit of some neural network operators, namely, the CardaliaguetEuvrard and ”squashing” operators. This is given through the moduli of continuity of the involved right and left Caputo fractional derivatives of the approximated function and they appear in the right-hand side of the associated Jackson type inequ...

متن کامل

Semiconductor Models: Their Mathematical Study and Approximation

Emphasis in this paper is upon the development of the mathematical properties of the drift-diffusion semiconductor device model, especially steady-state properties, where the system is incorporated into a fixed point mapping framework. An essential feature of the paper is the description of the Krasnosel’skii calculus, the appropriate extension to nonlinear equations and systems of the famous i...

متن کامل

Numerical Approximation of Fractional Powers of Regularly Accretive Operators

We study the numerical approximation of fractional powers of accretive operators in this paper. Namely, if A is the accretive operator associated with an accretive sesquilinear form A(·, ·) defined on a Hilbert space V contained in L(Ω), we approximate A for β ∈ (0, 1). The fractional powers are defined in terms of the so-called Balakrishnan integral formula. Given a finite element approximatio...

متن کامل

Numerical approximation of fractional powers of elliptic operators

We present and study a novel numerical algorithm to approximate the action of T := L where L is a symmetric and positive definite unbounded operator on a Hilbert space H0. The numerical method is based on a representation formula for T in terms of Bochner integrals involving (I + tL) for t ∈ (0,∞). To develop an approximation to T , we introduce a finite element approximation Lh to L and base o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Problems in Engineering

سال: 2016

ISSN: 1024-123X,1563-5147

DOI: 10.1155/2016/4356371